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ABSTRACT: Distance determination from an echo intensity modulation
obtained by pulsed double electron−electron resonance (DEER) experi-
ment is a mathematically ill-posed problem. Tikhonov regularization yields
distance distributions that can be difficult to interpret, especially in a
system with multiple discrete distance distributions. Here, we show that by
using geometric fit constraints in symmetric homo-oligomeric protein
systems, we were able to increase the accuracy of a model-based fit
solution based on a sum of Rice distributions. Our approach was validated
on two different ion channels of known oligomeric states, KcsA (tetramer)
and CorA (pentamer). Statistical analysis of the resulting fits was
integrated within our method to help the experimenter evaluate the significance of a symmetry-constrained vs standard
model distribution fit and to examine multidistance confidence regions. This approach was used to quantitatively evaluate the
role of the C-terminal domain (CTD) on the flexibility and conformation of the activation gate of the K+ channel KcsA. Our
analysis reveals a significant increase in the dynamics of the inner bundle gate upon opening. Also, it explicitly demonstrates the
degree to which the CTD restricts the motion of the lower gate at rest and during activation gating.

■ INTRODUCTION

Distance determination in macromolecules, and particularly in
membrane proteins, is often at the core of arguments to
decipher molecular mechanisms by which these nanomachines
execute their biological function.1−3 In transporters, distance
determination has been extensively used to decipher not only
the extent of molecular motion but also the nature of the
alternative access mechanism.4,5 The pulsed double electron−
electron resonance (DEER) method is an unparalleled tool for
measurement of long-range distances in proteins (20−80 Å).6

EPR offers several advantages over other spectroscopic
techniques such as fluorescence resonance energy transfer
(FRET). First, the small size of the spin label improves its
accessibility to protein target sites. Second, the very short linker
significantly improves probe localization by limiting the probe’s
diffusive region. Third, the same probe is used to label all target
sites, which greatly simplifies the labeling strategy. Fourth, in
DEER experiments, the signal is not polluted by possible
under-labeling of the sample since the echo modulation arises
exclusively from dipolar coupling. All these advantages translate
into greater accuracy of probe position when applied to a
macromolecule. The sensitivity and reliability of this technique
depends on the optimization of the sample preparation,
experimental conditions for measurement, and data analysis.4,5

Analysis of DEER measurements yields a distance distribu-
tion obtained by either a model-free (e.g., Tikhonov
regularization) or model-based fit. In this work, we improved
model-based distance distribution analysis by utilizing the
symmetry of homomeric proteins. Experimentally, all subunits

are spin-labeled at the same site. In such a multispin system,
high precision distance determination has been obtained using
a classical four pulse DEER protocol.7 However, broadening of
the distance distribution may occur due to the signal
contributions from the combinations of dipolar frequencies.8

Our geometric fit constraint method applies to a large class of
proteins, including membrane proteins, which are often
assembled into symmetrical multimeric entities. This is the
case for Na+,9 Ca2+,10 K+,11 Mg2+,12 mechanosensitive,13 and
ligand-gated ion channels.14 The inherent symmetry of subunit
organization enables the fit of a model-based distance
distribution function using the known organization of the
protein in question.
Generating a distance distribution, P(r), of interprobe

distance r from a DEER signal is a moderately mathematically
ill-posed problem, and as such, slight variations in the raw data’s
signal-to-noise ratio (SNR) can generate a large difference in
the distance distributions.15,16 Tikhonov regularization is an
elegant and widely used method for model-free analysis of
DEER signal.17 Briefly, this technique minimizes the squared
error between simulated and measured dipolar evolution by
balancing smoothness and resolution of the distance distribu-
tion using a dampening term. Since the width of the distance
distribution is not known in advance, the optimal regularization
parameter λ must be selected (typically by the L-curve
criterion18). Conversely, the distance distribution P(r) can
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also be obtained by using a model-based approach, which has
the advantage of enforcing smoothness and improving
convergence, thereby improving the reliability of fitted
distances provided that the chosen model is correct.
Comparison and validation of any model-based fit to that of
Tikhonov regularization is a critical component of such distance
analysis. A recent study demonstrated that the interprobe
distance distribution of two normally distributed spin labels is
described by a three-dimensional Rice (Rice3D) distribution
rather than a Gaussian, which is especially important for
accurate parameter estimation in broad distance distributions
(e.g., μ/σ < 4 with mean interprobe distance μ and standard
deviation σ of each spin label position).19

In this study, we sought to incorporate the intrinsic
symmetry of ion channels into model-based distance
distribution fits. These homomeric proteins are each arranged
as a regular convex polygon with m vertices (subunits). In the
biologically relevant range of m = 3−6, all geometries have
vertex-to-vertex lengths characterized by one unique side
(adjacent) and the following number of unique diagonals
(dm): d3 = 0, d4,5 = 1, d6 = 2. By symmetry, the number of
expected peaks in the distance distribution P(r) is equal to the
sum of unique sides and diagonals (1 + dm). Moreover, the
diagonal and side lengths maintain a constant proportionality
relation, independent of polygon size. In this paper, we
consider the geometries for m = 4 and 5, which both yield two
unique mean distances between spin label paramagnetic
centers, which we denote as ⟨r1⟩ for adjacent and ⟨r2⟩ for

diagonal. In these cases, there is only one proportionality
constant, given by the mean distance ratio ⟨k⟩ = ⟨r2⟩/⟨r1⟩, and
P(r) is appropriately modeled by a two-component Rice3D
distribution. In the case of polygon models with m > 6, multiple
distance ratios ⟨ki⟩ exist. If we consider a homopentameric (m =
5) protein such as the Mg2+ channel CorA, where all subunits
are spin-labeled at the same site, we expect ⟨k⟩ = (1 +√5)/2 ≈
1.618. Likewise, a homotetrameric (m = 4) assembly such as
the K+ channel KcsA is expected to have ⟨k⟩ = √2 ≈ 1.414.
Expected distance distributions as a function of the oligomeric
state are illustrated in Figure 1a. Given symmetric labeling, it is
important to note that the mean distance ratio is equivalent for
the mean position of the spin labels (e.g., nitroxide oxygen), as
well as their corresponding labeling site (e.g., cysteine Cα).
We demonstrate that the distance ratio ⟨k⟩ can be utilized as

a symmetry-based inequality constraint to (1) improve the
model fit of a distance distribution P(r) to DEER data and (2)
aid interpretation of distances obtained from model-based fits.
The method is especially suitable for poorly defined (flat)
dipolar evolutions, as often obtained from flexible/dynamic
systems. CorA V248C serves as an illustrative example of such a
scenario (Figure 1b,c).
This new approach was implemented on two different ion

channels of different oligomeric states, and the results are
compared with other fitting methods (2 Rice3D and Tikhonov
regularization). We also performed a statistical analysis to
compare the significance of different models and fitting
procedures. The cross validation between our DEER data and

Figure 1. Distance determination in multimeric proteins. (a) Schematic representation of the expected distance distribution profile as a function of
the oligomeric state of a homomeric protein. (b) Cysteine mutation in CorA is shown at position V248 as black spheres at Cβ. For clarity, only three
subunits are shown. (c) The DEER refocused echo intensity is plotted (○) vs the evolution time. Fits determined from Tikhonov regularization, 2
Rice3D, and symmetry-constrained 2 Rice3D models are shown in black, blue, and red, respectively. In the inset, the optimal regularization parameter
(λ = 158) is shown at the corner of the L-curve. (d) Corresponding distance distributions are plotted using the same color code. The vertical dashed
lines represent the average spin−spin distances calculated from rotameric libraries of the spin label conjugated to the CorA V248C label site.32
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the corresponding X-ray structures provides a solid framework
to study conformational changes associated with the gating
mechanism of KcsA and CorA.
Taking advantage of our method we sought to monitor the

influence of the C-terminal domain (CTD) helix bundle on the
dynamics and the extent of motion of KcsA’s activation gate.
Upon proton-dependent activation, the K+ channel KcsA
undergoes relatively large movements of its helical trans-
membrane segment TM2. These rearrangements have been
extensively characterized by spectroscopic methods such as
EPR,20 fluorescence,21 solution NMR,22 and solid-state NMR,23

and are in agreement with available open KcsA X-ray crystal
structures.24,25 However, the influence of the CTD on the
extent of the inner bundle gate opening has not been studied in
the absence of either crystal lattice contacts or crystallographic
chaperones. Here we found that in the absence of the CTD, the
lower gate opening is significantly increased with respect to the
full length channel, with a concomitant increase in protein
dynamics upon activation. Our results are discussed in the
context of the C-type inactivation mechanism and existing
crystal structures.

■ MATERIALS AND METHODS
Protein Expression and Purification. Single cysteine mutants of

Thermotoga maritima CorA (TmCorA) channels and Streptomyces
lividans KcsA channels were expressed and purified as previously
described.26,27 Briefly, after expression, the membrane fractions were
solubilized with 10 mM DDM and loaded onto a pre-equilibrated
cobalt affinity column (Clontech). During the purification, 5 mM β-
mercaptoethanol and 0.5 mM TCEP were used to prevent cysteine
oxidation. Immediately after protein elution with 250 mM imidazole,
cysteine mutants were labeled with two additions of a 10-fold molar
excess of MTSL spin label probes (Toronto Research Chemicals) on
ice for 30 min sequentially. Labeled proteins were then further purified
by size exclusion chromatography on a Sephadex G-200 column (GE
Healthcare) previously equilibrated with buffer (Hepes 50 mM, pH =
7.0, NaCl 200 mM, MgCl2 40 mM, DDM 1 mM, for CorA mutants
and Hepes 50 mM, pH = 7.0, or McIlVaine buffer (phosphate/citrate)
pH = 3, KCl 200 mM, DDM 1 mM for KcsA mutants). The fractions
containing the main monodisperse peak were collected and pooled
together, supplemented with 20% glycerol, and concentrated to 100
μM final concentration of oligomer assembly using a Millipore
Centricon 30 kDa centrifugal filter unit.
DEER Experiment. Samples were loaded into a quartz capillary

(Vitrocom) and equilibrated at 80 K under a flow of liquid N2 using an

Oxford cryostat. A standard four-pulse DEER sequence was conducted
on a Bruker Elexsys 580 EPR spectrometer equipped with a 3 mm
split-ring resonator. The four-pulse DEER sequence was set with
pulses of 16 ns (90°) and 32 ns (180°), and evolution times were
typically set to 1800−2500 ns depending on distance and signal
quality. The pump pulse was placed at the center peak of the spectrum,
and the observation pulses were placed at a 75 MHz distance away on
the low field side. Refocused echo intensity evolutions were recorded,
and these phase-corrected signals were background-corrected assum-
ing a homogeneous 3D distribution.

Distance Distribution Analysis. The distance distribution P(r)
was recovered from DEER measurements by three different
approaches: model-free fit by Tikhonov regularization, model fit of a
two-component Rice3D mixture, or model fit of a two-component
Rice3D mixture with distance ratio constraint. For all approaches, the
DeerAnalysis 2011 program16 was used for analysis with software
modifications described below. Each time domain dipolar evolution
data set was preprocessed using tools provided by DeerAnalysis to
correct for experimental phase errors and to separate the intra-
molecular distances from the intermolecular background contribution.
The background was subtracted from the dipolar evolution assuming a
homogeneous distribution in three dimensions, appropriate for spin-
labeled membrane proteins in detergent micelles. The origin of the
background fit was determined by approximate Pake transformation in
the frequency domain. The background-subtracted experimental
dipolar evolution is referred to below as Vexp(t).

Model-Free Distance Distributions by Tikhonov Regulariza-
tion. For pulsed EPR measurements, Tikhonov regularization
minimizes the following functional:6

λ= − +λG P K r t P r V
r

P r( ) ( , ) ( )
d

d
( )exp 2

2
2

2
2

2

(1)

where K(r,t) is a kernel that represents the ensemble average of the
dipolar coupling over all possible molecular orientations for a given
spin label radial separation r (and is the shape of a Pake double dipolar
signal in the time domain); P(r) represents the distance distribution of
r. The first term on the right-hand side is the mean square deviation
between the simulated and experimental dipolar evolution function;
the second term on the right-hand side is the square norm of the
second derivative of the distance distribution, which is multiplied by
regularization parameter λ. Tikhonov regularizations were performed
for a logarithmic sequence of regularization parameters on the range λ
= [10−5, 103] with 4 points per decade. The optimal regularization
parameter λ was calculated from this set of solutions by applying the L-
curve criterion of maximum curvature.18 For all data sets, the optimal λ
was confirmed to be located at the corner of the L-curve by visual
inspection. Parameters from Tikhonov regularization solution at

Table 1. Distance Determination Results for DEER Data Analyzed by Various Methods

cysteine mutant distribution fit method ⟨r1⟩
a,b ⟨r2⟩

a,c ⟨k⟩ fit rmsd threshold rmsd (α = 0.05)

CorA V248C X-ray structure 26.0 41.3 1.588 d
Tikhonov (λ = 158) 22.8 40.35 1.770 0.0086750
2 Rice3D 19.9 (±9) 40.3 (±3.3) 2.027 0.0086698 0.0090260
2 Rice3D [1.578 ≤ ⟨k⟩ ≤ 1.645] 23.6 (±4.9) 38.8 (±4.2) 1.645 0.0088010

CorA R252C X-ray structure 24.2 38.0 1.570 d
Tikhonov (λ = 31) 24.2 39.1 1.616 0.0074304
2 Rice3D 23.9 (±2.2) 38.7 (±1.8) 1.6185 0.0076829 0.0080159
2 Rice3D [1.578 ≤ ⟨k⟩ ≤ 1.645] 23.9 (±2.3) 38.7 (±1.8) 1.6185 0.0076829
2 Rice3D [1.367 ≤ ⟨k⟩ ≤ 1.433] 24.2 (±1.4) 34.6 (±5.5) 1.433 0.0125890

KcsA R64C X-ray structure 22.0 32.0 1.454 d
Tikhonov (λ = 10) 22.0 31.8 1.445 0.0056134
2 Rice3D 22.1 (±0.7) 31.4 (±3.6) 1.4212 0.0043960 0.0045779
2 Rice3D [1.367 ≤ ⟨k⟩ ≤ 1.433] 22.1 (±0.7) 31.3 (±3.6) 1.418 0.0043963
2 Rice3D [1.578 ≤ ⟨k⟩ ≤ 1.645] 20.8 (±3.3) 33.7 (±2.7) 1.578 0.0061192

aValues reported in parentheses are fit values of σR from the 2 Rice3D model (i.e., not distance confidence intervals). bAdjacent distance (Å).
cDiagonal distance (Å). dNot applicable.
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optimal λ were analyzed and reported in Table 1. All data set solutions
had a distribution P(r) comprised of two primary distance peaks. The
first peak (shorter distance) was interpreted as the mean adjacent
distance r1 and the second peak (longer distance) was interpreted as
the mean diagonal distance r2.
Model-Based Distance Distributions by Three-Dimensional

Rice Mixture. A model fit minimizes the following functional:

θ= −G P K r t P r V( ) ( , ) ( ; )model exp 2

2

(2)

where θ is a parameter vector that defines the probability density
function of an analytical model distribution. Here, dampening is
inherently introduced by the smooth distance distribution, Pmodel(r; θ).
The interprobe distance r = (Δx2 + Δy2 + Δz2)1/2 between two spin
label centers, each normally distributed in space (x, y, z) with standard
deviation σS about its center, is described by the Rice3D
distribution,28,29 generalized to n-dimensions as
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where the mean interprobe distance μ > 0 and Rice standard deviation
σR > 0 are real numbers; n is the dimension of the spin label normal
random variables (n = 3 for labeled membrane proteins in detergent
micelles); Iv denotes the modified Bessel function of the first kind of
real order v. Assuming all spin labels have equal spatial variance, the
Rice standard deviation is related to the spin label spatial standard

deviation by σR = 21/2σS, which is a correction from that reported in ref
30. The Rice3D distribution can be simplified30 to a more
computationally efficient form using the relation I1/2(x) =
[2/(πx)]1/2 sinh(x):
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The probability density function of the two-component mixture of
Rice3D distributions is

θ μ σ μ σ= + − ≥P r wf r w f r r( ; ) ( ; , ) (1 ) ( ; , ), 03 1 R,1 3 2 R,2

(5)

where w is the fraction of the first mixture component and θ = (μ1,
σR,1, μ2, σR,2, w) is the set of all parameters that defines the bimodal
distance distribution. The probability density function P(r; θ) was fit
to Vexp(t) by minimization of eq 2 using nonlinear least-squares
regression.

Symmetry-Constrained Model Fit and Software Modifica-
tion. DeerAnalysis 2011 software16 was modified and supplemented in
MATLAB (The MathWorks, Inc.) to introduce the use of nonlinear
inequality constraints into the nonlinear minimization problem of
fitting a model-based distance distribution to a measured dipolar
evolution data set using eq 2. We primarily added the ability to
perform constrained two-component Rice3D and two-component
Gaussian mixture model fits where the mean distance ratio ⟨k⟩ =
⟨r2⟩/⟨r1⟩ = μ2/μ1 is constrained within user-defined limits [kmin,kmax]

Figure 2. Rotamer-based simulation of distance ratio distribution for KcsA and CorA. (a) MTSL rotamers were attached to CorA at position 252
using the program MMM.32 Nitroxide oxygen coordinates were oversampled (see text) and are displayed as black dots. CorA 252C Cα are
represented as red dots, and the channel’s symmetry axis is marked at the origin as a green cross. MTSL rotamer clouds were independently modified
by exclusion of points based on a linear scan of occupancy (step = 0.01), radial distance (step = 0.5 Å), and cylindrical angle (step = ±0.3°). For
visualization of occupancy, rotamers in the uppermost subunit were grayscaled (black = high; white = low). The blue circle (dotted) and arrow
represent the radial distance scan. The red lines (dashed) and arrows represent the cylindrical angle scan. (b) Distance histograms are shown to
exemplify one MTSL cloud modification for one mutant; r1 is red, r2 is blue, and their combination is gray. Asterisks represent the mean of the
distribution using the same color code; vertical dotted lines represent Cα distances. A 2 Rice3D fit of the combined distribution is displayed in black.
(c) Histogram of ⟨k⟩ from the set of all MTSL cloud modifications for one mutant. (d) Histograms of ⟨k⟩ from the set of all MTSL cloud
modifications for 11 KcsA (tetramer) and 15 CorA (pentamer) mutants. For both channels, the average ⟨k⟩ is plotted as a black circle, and 1−99%
and 5−95% intervals are plotted as tall and short ticks, respectively.
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relevant to known symmetry of the protein under investigation. For
model fits of a distance distribution, DeerAnalysis 2011 performs
minimization in the least-squares sense using the built-in MATLAB
function fminsearch with simplex search method. We implemented
model fitting with nonlinear inequality constraints using the built-in
MATLAB function fmincon with active-set algorithm. Both functions
were verified to return the same solution when used under equivalent
conditions. The ability to perform model fits with nonlinear inequality
constraints will be implemented in a future release of DeerAnalysis
software,16 available from ETH Zurich, http://www.epr.ethz.ch/
software/.

■ RESULTS AND DISCUSSION
A Symmetry-Derived Nonlinear Constraint To Fit

DEER Measurements. A poorly defined (flat) dipolar
evolution is difficult to transform into a reliable distance
distribution (Figure 1c). Here, we sought to incorporate
intrinsic symmetry of homomeric ion channels into model-
based distance distribution fits. Both homotetrameric and
homopentameric assemblies have an adjacent ⟨r1⟩ and diagonal
⟨r2⟩ distances related by the ratio ⟨k⟩ = ⟨r2⟩/⟨r1⟩ with
theoretical values of 1.414 and 1.618, respectively (Figure
1a). Of course in nature, symmetry is never perfect, and
membrane proteins are no exception. Simple measurement of
Cβ−Cβ distances from the CorA crystal structure31 illustrates
this deviation, resulting in a k interval of 1.57−1.68. In addition,
spin labels could adopt different rotameric configurations,
which could distort the symmetry of the labels within a single
protein. Combined with thermal motion, these observations
support the idea that the distance ratio must be contained
within two limits, rather than at a fixed value. Accordingly, we
sought to evaluate in a rational and quantitative manner the
distribution of ⟨k⟩. Accordingly, we selected a total of 26
positions distributed along the sequence of KcsA and CorA and
used an in silico spin-labeling technique via the software
MMM.32 For each mutant tested, the selected residue was
mutated to cysteine and MTSL was attached with the 26 most
probable rotameric conformations, thus producing a cloud of
possible spin label conformations on each channel subunit. The
nitroxide oxygen (O1) atom was used as a proxy to the position
of the paramagnetic center of the probe. To slightly smooth the
MTSL O1 distance distribution and account for minimal
conformational relaxation, each O1 point was replicated 5 times
with a small amount of random noise added (sample points
were randomly drawn from a uniformly distributed sphere with
0.5 Å radius, centered at the actual O1 position). To evaluate
the effect on ⟨k⟩ from MTSL cloud distortion caused by
conformational change or spin label rotameric freedom, we
implemented simulation tools to sequentially include or exclude
rotameric conformations based on three criteria: (1)
occupancy, (2) O1 radial distance to the symmetry axis, and
(3) O1 cylindrical angle with respect to the labeled cysteine Cα
(Figure 2a). The influence of these three parameters was
homogeneously assayed by our sampling conditions such that
only uniquely modified MTSL clouds were analyzed. For each
modification condition, we calculated ⟨k⟩ and a histogram of all
unique intersubunit O1−O1 distances that could be success-
fully fit by a 2 Rice3D model distribution (Figure 2b). From the
set of all MTSL cloud modification conditions, we obtained a
histogram for ⟨k⟩ (Figure 2c). The final result of this simulation
analysis performed on all KcsA and CorA mutants is presented
in Figure 2d. Remarkably, we found that the distance ratio
remained extremely close to theoretical values: ⟨k⟩ = 1.402 for
KcsA and ⟨k⟩ = 1.605 for CorA. Moreover, despite our efforts

to distort the rotameric spatial distribution of spin labels at their
binding site, the distribution of ⟨k⟩ remained tight. The 1−99%
⟨k⟩ interval for all mutants tested was 1.367−1.433 for KcsA
and 1.578−1.645 for CorA (Figure 2d). We assumed that the
extensive number of labeling sites tested in addition to the
comprehensive sampling strategy leads to a robust and reliable
⟨k⟩ distribution. Henceforth, we refer to this exercise as
rotamer simulation.

Symmetry-Constrained Analysis of a Broad Distance
Distribution. We sought to compare the experimentally
derived P(r) from a poorly defined dipolar evolution obtained
from CorA V248C analyzed by three different fit methods:
Tikhonov regularization, 2 Rice3D, and symmetry-constrained 2
Rice3D (see Materials and Methods). Figure 1c shows that fits
of the background-subtracted dipolar evolution by these three
methods are almost indistinguishable visually, and have fairly
similar root-mean-square deviation (rmsd) values (Table 1).
However, the corresponding set of distance distributions are
substantially different (Figure 1d). When we imposed rotamer
simulation-based limits on the distance ratio (⟨k⟩ = 1.578−
1.645) to stabilize the correct solution, we obtained adjacent
and diagonal distances that both agree remarkably well with the
distances calculated from the CorA crystal structure12 using a
rotameric library of the spin label.32 Notice that P(r) obtained
by Tikhonov regularization is distorted from the idealized
distribution, illustrated by emergence of a third peak. We argue
that this deviation from an idealized distance distribution is
purely artificial and is not a true reflection of the structural
dynamics of the system. This reasoning is based on the
observation that when the dipolar evolution is better defined,
that is, when more periods are detected, P(r) calculated from a
Tikhonov fit is virtually equivalent to a 2 Rice3D distribution
(see Figure 3). Recently, an improved dipolar evolution was

demonstrated by a groundbreaking paper by the Hubbell group
where they used a bifunctional probe, which reflects the motion
of the protein with greater accuracy. When they compared P(r)
obtained with the bifunctional vs classical probe at an
equivalent position, they obtained a sharper distribution and
homogeneous peak shape.33 This result supports the idea that
our approach of using a symmetry-constrained 2 Rice3D model
to derive the distance distribution is an idealization rather than
an oversmoothing of the data. It is important to note that all

Figure 3. Validation of the symmetry-constrained model fit method.
(a) The background-subtracted dipolar evolution (○) obtained for the
CorA R252C mutant was fit using three different methods: Tikhonov
regularization (λ = 31) is shown in black, a 2 Rice3D fit with distance
ratio ⟨k⟩ = 1.578−1.645 is shown in red, and a 2 Rice3D fit
intentionally misconstrained such that ⟨k⟩ = 1.367−1.433 is shown in
blue. The inset is a magnification to better illustrate fit disparities. (b)
The corresponding distance distributions are shown using the same
color code. The dashed vertical lines correspond to average distances
calculated from the X-ray structure.31
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mathematical tools used to extract P(r) require a certain
smoothness of the distribution.6 Several algorithms have shown
that the introduction of constraints and smoothing in the
distance domain can stabilize the solution. This has been shown
for the approximate Pake transformation34 and is also at the
core of Tikhonov regularization.16,35

Statistical Analysis of Symmetry-Constrained Dis-
tance Distributions. Since oversmoothing the fit of the
data is a legitimate concern, we sought to investigate the
influence of our symmetry-constrained model on a more well-
defined CorA mutant data set. Here, we chose the CorA
cysteine mutant R252C that yields data of much better quality
compared with V248C, that is, a well-defined background-
corrected dipolar evolution (Figure 3a). In this case, we
observed no substantial difference between P(r) generated by
Tikhonov regularization or by the 2 Rice3D model approach
(Figure 3b). Interpretation of distances obtained by a
symmetry-constrained model fit requires statistical analysis of
the goodness of fit. A generalized model distribution function
can be defined by parameter vector θ = (θ1, θ2,..., θp) with p
fitted parameters. In the absence of a symmetry constraint, the
least-squares estimate of θ, denoted by θ̂, minimizes the error
sum of squares (S) between the experimental and simulated
dipolar evolution. Note that application of a symmetry
constraint does not alter the number of free parameters. In

this case, the statistical significance of a constrained nonlinear
regression can be assessed by the likelihood-ratio criterion,
which defines the 100(1 − α)% confidence region36,37 of the
parameters as

θ θ= ̂ +
−

α
−

⎛
⎝⎜

⎞
⎠⎟S S

p
n p

F( ) ( ) 1 p n p,
(6)

where the dipolar evolution has n observations and Fp,n−p
α is the

upper critical value of the Fp,n−p distribution at significance level
α. Equation 6 defines a threshold at which variation of the
parameters causes a fractional increase in S that is statistically
significant at level α, typically set at α = 0.05(2σ), and assumes
that observations are independent.
The likelihood ratio allows rigorous estimation of parameter

uncertainty by error surface analysis.38 The procedure is to first
obtain the optimal parameter set θ̂ from a standard (uncon-
strained) model fit with minimum error, that is, S(θ̂) or
rmsd(θ ̂). Next, the selected parameter is incremented away
from its optimal value by a fixed step size, and the regression is
repeated (with all other parameters simultaneously optimized).
This process continues until the fit error exceeds the threshold
value. The parameter value that defines the exact confidence
interval boundary is obtained by quadratic interpolation. This
procedure is then repeated in the opposite direction to obtain
the opposite boundary.

Figure 4. DEER measurements from the homotetrameric K+ channel KcsA R64C and distance confidence regions. (a) The R64 residue is shown in
black on a ribbon representation of the X-ray structure.40 (b) The background-corrected dipolar evolution is shown as open circles and the fitted
dipolar evolution from a 2 Rice3D model is plotted as a solid line; fit residuals are shown in the inset. (c) The corresponding distance distribution is
shown as a solid line together with the expected distances (dashed lines) from the crystal structure. (d) The error surface of the distance ratio ⟨k⟩
from 2 Rice3D model fits of KcsA R64C (blue) and CorA R252C (black). Distance ratio confidence intervals by F-test at α = 0.32 (1σ), α = 0.05
(2σ), and α = 0.003 (3σ) significance levels are shown as dashed horizontal lines. Shadowed areas represent the 5−95% and 1−99% ⟨k⟩ intervals
determined by rotamer simulation. (e) Plots of the 68%, 95%, and 99.7% approximate confidence regions of mean distances (⟨r1⟩, ⟨r2⟩) obtained by 2
Rice3D model analysis of DEER measurement from CorA R252C and KcsA R64C. The asterisk is positioned at the optimal parameter set θ̂.
Shadowed areas represent the 1−99% ⟨k⟩ intervals.
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By inversion, the likelihood ratio also gives an F-test to
determine whether the model fit is significantly different in
constrained vs standard form. This F-test thus has the null
hypothesis H0: θ = θ̂ and alternative hypothesis HA: θ ≠ θ̂. For
example, if a symmetry-constrained fit yields S(θ) that is greater
than the right-hand side of eq 6, the parameter set is
significantly different. We analyzed our data using the
DeerAnalysis program,16 which reports goodness of fit by
rmsd. Therefore we used the equivalent form of eq 6 to
calculate all F-test threshold values reported in Table 1:

θ θ= ̂ +
−

α
−

p
n p

Frmsd( ) rmsd( ) 1 p n p,
(7)

This F-test allows us to compare, without bias, the goodness of
fit between a symmetry-constrained and standard form of the
same model. As a proof of principle of this F-test, we
intentionally misconstrained our fit of the R252C data set using
a 2 Rice3D distribution with distance ratio ⟨k⟩ = 1.367−1.433
(from rotamer simulation), as if CorA was a tetramer (Figure
3). As anticipated, the small variation in the fit of the dipolar
evolution translates into a dramatic change in the distance
distribution. The values reported in Table 1 show that the
incorrect model has rmsd above the F-test threshold, letting the
user know that the model fit is significantly different (worse) at
α = 0.05. This demonstrates that the use of this F-test gives the
user a valid and useful approach to compare different models
and fitting procedures for analysis of DEER data.
Validation on a Homotetrameric K+ Channel. We

further validated the method on another membrane protein
harboring a different oligomeric state. We chose the well
characterized K+ channel KcsA because we can easily compare
the DEER-derived distance distribution against its well-
accepted crystal structure.39 The residue R64, located in the
outer vestibule of KcsA, has already been shown to be suitable
for DEER measurement and was therefore our first choice.7

Remarkably, as illustrated in Figure 4, we were able to find
excellent agreement between our R64C data set fit by a 2
Rice3D distribution constrained by ⟨k⟩ = 1.367−1.433, the
crystal structure,40 and previously reported DEER measure-
ments7 (Table 1). As another proof of principle for the F-test,
we observed that when we intentionally misconstrained the fit
with distance ratio ⟨k⟩ = 1.578−1.645, as if KcsA was a
pentamer, the rmsd exceeds the F-test threshold value at α =
0.05. Interestingly, the distance ratio error surface (rmsd vs ⟨k⟩)
shows that the error minimum is located close to the theoretical
⟨k⟩ value for both systems (CorA and KcsA). There are several
important observations that apply to both systems: (1) the
theoretical ⟨k⟩ values are contained within their respective 95%
confidence intervals, and (2) there is no overlap between 95%
confidence intervals of ⟨k⟩ (Figure 4d). This result indicates
that the ⟨k⟩ from a 2 Rice3D fit can be used to distinguish
between a homotetrameric and a homopentameric assembly. It
also suggests that a 95% confidence interval (2σ) is likely to be
the best compromise between statistical significance and
stringency.
Distance Confidence Regions as a Measure of

Uncertainty for DEER Measurements. The ability to
perform an F-test on the rmsd from a DEER fit allowed us
to determine distance confidence regions for model-based fits
of our DEER data. Distance confidence region analysis conveys
the most complete representation of the confidence of
recovered distances. Figure 4e shows various confidence

regions for mean distances (⟨r1⟩, ⟨r2⟩) obtained by 2 Rice3D
analysis of CorA R252C and KcsA R64C data sets. Each data
set was fit by the model at fixed combinations of mean distance
(⟨r1⟩, ⟨r2⟩) within a uniformly spaced 2D grid of test points that
encompassed the solution basin. At each test point (⟨r1⟩, ⟨r2⟩),
all other parameters were simultaneously optimized. The rmsd
from the set of grid solutions was then interpolated (cubic) at
10× higher resolution to obtain a smooth expectation surface,
followed by isocontour evaluation at selected levels of
significance. The 100(1 − α)% confidence interval of a selected
parameter (e.g., ⟨r1⟩), can be obtained by projection of the
100(1 − α)% confidence region onto the selected parameter
axis. For these well-defined data sets, several observations can
be made about the Rice3D model and its parameter estimation.
First, the optimal solution (and the majority of the 68%
confidence region) lies within the respective ⟨k⟩ intervals
obtained by rotamer simulation. Second, the confidence regions
are approximately elliptical, with slight distortion for the CorA
R252C data set, indicating low degree of nonlinearity (a linear
model has elliptical confidence regions). Third, the relative
roundness of the confidence regions indicates stable parame-
ters, which means that the estimation precision of both distance
parameters is balanced, and there is low parameter-effect
curvature (i.e., well-conditioned parametrization). Fourth, the
small off-axis tilt of the confidence regions indicates low
parameter correlation. Combined, these observations validate
our proposed use of statistical inference for the 2 Rice3D model.

Influence of the C-Terminal Domain on Activation
Gating of KcsA. The activity of ion channels is often regulated
by interaction with ligand or other subunits via their
cytoplasmic domain (N- or C-terminus). For example, Ca2+

activation of BK channels is mediated through its binding at the
cytoplasmic domain RCK.41,42 In some prokaryotic K+

channels, the cytoplasmic domain plays an important role in
protein folding and thermal stability.43−45 The KcsA CTD
directly connects to the gating transmembrane helices TM2
and folds as a four-helix bundle that projects ∼70 Å into the
cytoplasm.45,46 Using a chaperone-assisted crystallography
approach, the structure of the full-length (FL) KcsA was
recently solved in an open/inactivated conformation.25 These
studies have revealed that the CTD remains a four-helix bundle
during the gating process and by exerting a physical strain on
the lower gate restricts the motion of the gating helices.24,25

This observation correlates well with the increased rate and
extent of C-type inactivation when the CTD is truncated.47

Moreover, binding of crystallographic chaperones (Fab frag-
ments) has functional consequences, slowing down the rate of
C-type inactivation.25 Since C-type inactivation is mechanically
coupled to the opening of the lower gate,24,47 it is reasonable to
propose that the Fab fragment used for crystallography
provides additional strain on the lower gate that would further
stabilize the closed conformation.
Taking advantage of our ability to reliably determine distance

in homomeric proteins, we sought to monitor the influence of
the KcsA CTD on the extent of lower gate opening in the
absence of any antibody or artificial crystal lattice contact. The
outward facing position 114 located at the lower gate was an
ideal reporter candidate because interprobe separation is
compatible with the distance range of the DEER technique
(20−80 Å). The experiments were conducted for both
constructs (FL and ΔCTD) at pH = 7, which stabilizes the
closed state, and at pH = 3, which favors the open
conformation. In the closed state (pH = 7), the truncation of
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the CTD is known to produce a substantial structural
rearrangement of the lower gate as detected semiquantitatively
by FRET47 and revealed in further detail by X-ray
crystallography.46 Our DEER experiments for F114C clearly
show that the interprobe distances change at pH = 7 when
KcsA is truncated (Figure 5 and Table 2). The mean distances
(⟨r1⟩, ⟨r2⟩) decrease from (25.3, 32.3 Å) for the FL channel to
(23.1, 35.6 Å) for the ΔCTD channel. Although small, this
modest rearrangement is reliably reported by our DEER
experiment because there is no overlap of the distance
confidence regions at the 99.7% (3σ) confidence level (Figure
5b). This distance difference seems fully compatible with the
15° outward tilting of TM2 after residue 110 observed by

crystallography when truncated structures are compared with
the full length channel.46

In the full length channel, we observe a very modest change
in interprobe distances when the channel is triggered to open
(Figure 5a). In the open state, the dipolar evolution is flatter
and the distance ratio constraint ⟨k⟩ is necessary to find a
satisfactory solution (Figure 5). The confidence region analysis
revealed no overlap at the 68% (1σ) level in the allowed
distance region between the pH = 7 and pH = 3 data sets.
However, there is a significant overlap at the 95% (2σ) level,
indicating that uncertainties of the DEER measurements at this
confidence level are greater than the inferred motion when
KcsA-FL opens.

Figure 5. Influence of the C-terminal domain on activation gating of KcsA. (a) Background-subtracted dipolar evolution of KcsA-F114C FL and
ΔCTD are shown in upper and lower panels, respectively. Data recorded at pH = 3 and pH = 7 are shown in red and blue, respectively. For each
construct, the inset displays the fit residuals and the right panel shows the corresponding distance distribution obtained by a symmetry-constrained 2
Rice3D model fit constrained with ⟨k⟩ = 1.367−1.433. For each data set, ⟨r1⟩ and ⟨r2⟩ are shown by asterisks. (b) Plots of the 68%, 95%, and 99.7%
approximate confidence regions of mean distances (⟨r1⟩, ⟨r2⟩), obtained by symmetry-constrained 2 Rice3D model analysis of DEER measurements
from KcsA-F114C FL and ΔCTD. Measurements obtained at pH = 7 (closed) and pH = 3 (open) are colored blue and red, respectively. An asterisk
is positioned at each optimal parameter set θ̂. The two diagonal lines represent the 1−99% ⟨k⟩ interval (1.367−1.433). (c) KcsA closed (3EFF)46

and open (3PJS)25 structures are aligned and ribbon-represented using the same color code view from the cytoplasmic side. The inset shows a
magnified lateral view of the activation gate where F114 is stick-represented. An analogous representation for the truncated channel is shown in the
lower panels using 1K4C39 and 3F7V24 PDB accession codes.

Table 2. Distance Determination at KcsA Activation Gate from Constrained 2 Rice3D Analysis

construct experimental conditions ⟨r1⟩
a,b ⟨r2⟩

a,c
fit rmsd threshold rmsd (α = 0.05)

KcsA F114C pH = 7 (closed) 25.3 (±3) 35.6 (±1.8) 0.0088333 0.0092203
pH = 3 (open) 26.5 (±2.9) 36.2 (±4.5) 0.0087260 0.0090727

KcsA F114C-ΔCTD pH = 7 (closed) 23.1 (±1.3) 32.3 (±1) 0.0029793 0.0031230
pH = 3 (open) 27.5 (±5.3) 38.6 (±1.2) 0.0062729 0.0065581

aValues reported in parentheses are fit values of σR from the 2 Rice3D model (i.e., not distance confidence intervals). bAdjacent distance (Å).
cDiagonal distance (Å).
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One major conclusion of the experiment is that the CTD
truncation allows wider opening of the activation gate at
position 114. This is evidenced by the large change in the
distance distribution of TM2. During opening, the mean
interprobe distance change is more than 6 Å for the diagonal
distance: (⟨r1⟩, ⟨r2⟩) increases from (23.1, 32.3 Å) at pH = 7 to
(27.5, 38.6 Å) at pH = 3 (Figure 5 and Table 2). Several KcsA-
ΔCTD open structures have been crystallized, with lower gate
openings (using T112 Cα−Cα diagonal distance as a reporter)
ranging from 15 to 17, 23, and 32 Å open (the closed state
being 12 Å).24 The activation mechanism is largely compatible
with CW-EPR20 and solid-state NMR23,48 conducted in the
presence of a lipid bilayer, reinforcing the idea that
crystallography has captured relevant conformations. The
average distance change observed by DEER seems in excellent
agreement with the intermediate opening states (structures 15
and 17 Å open) captured by crystallography24 with the mean
diagonal distance changes in Cα−Cα at residue T112 to be
∼6−8 Å from the closed state.
Interestingly, the dipolar evolution from F114C obtained in

the open state (pH = 3) is systematically flatter than its closed
state (pH = 7) counterpart, leading to a much broader distance
distribution. This observation is consistent with an increase in
protein dynamics represented by wider swings of the inner
bundle helices. The broad range of opening captured by
crystallography is likely correlated to the wider distance
distribution observed by DEER spectroscopy at pH = 3. This
suggests that upon activation, the lower gate is sampling a larger
conformational space than when the channel is closed. This
observation is not likely to arise from an increase in probe
dynamics, because the probe mobility does not increase
noticeably upon activation as measured by CW-EPR.20 Since
the opening of the inner bundle helices is physically coupled to
the inactivation of the selectivity filter via allosteric coupling,47

determining the correlation between the dynamics of the lower
gate and the conformational fluctuations of the selectivity filter
represents an important step toward the detailed understanding
of ion conduction and C-type inactivation in K+ channels.

■ CONCLUSIONS
In summary, we have implemented a simple but efficient
strategy to stabilize the fitting solution of DEER data using the
implicit organization of homomeric proteins. The methods
described here will be available in a future release of
DeerAnalysis software,16 available at http://www.epr.ethz.ch/
software/. The symmetry-constrained model fit allows
quantitative and statistical evaluation of theoretical vs
experimentally derived distance distributions. We have
experimentally shown that our approach is valid for a
homotetramer as well as for a homopentamer. We hope that
the method presented here will be particularly advantageous for
challenging targets and highly dynamic systems where the
distance distributions are broader and thus more difficult to
accurately fit due to a flatter dipolar evolution.
We have used the potential of this method to analyze the

influence of the KcsA C-terminal domain on the extent of lower
gate motion. We confirmed that in the absence of antibody and
crystal lattice contact, the CTD restricts lower gate movement,
a finding in excellent agreement with the increased rate and
extent of C-type inactivation accompanied by CTD trunca-
tion.47 We also found that in the absence of any crystallo-
graphic lattice contact or Fab fragment attached to the protein,
KcsA’s lower gate opens approximately 6−8 Å, with a very wide

dynamic range, largely recapitulating the various degrees of
opening observed by crystallography. Finally, the broadening of
the distance distribution when KcsA opens has revealed the
dynamic nature of the lower gate suggesting that upon
activation, the lower gate populates multiple conformationally
open states.
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